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ABSTRACT
Our work is motivated by predicting the progression of Alzheimer’s disease (AD) based on a series of
longitudinally observed brain scan images. Existing works on dynamic prediction for AD focus primarily on
extracting predictive information from multivariate longitudinal biomarker values or brain imaging data at
the baseline; whereas in practice, the subject’s brain scan image represented by a multi-dimensional data
matrix is collected at each follow-up visit. It is of great interest to predict the progression of AD directly
from a series of longitudinally observed images. We propose a novel multi-dimensional functional principal
component analysis based on alternating regression on tensor-product B-spline, which circumvents the
computational difficulty of doing eigendecomposition, and offers the flexibility of accommodating sparsely
and irregularly observed image series. We then use the functional principal component scores as features
in the Cox proportional hazards model. We further develop a dynamic prediction framework to provide
a personalized prediction that can be updated as new images are collected. Our method extracts visibly
interpretable images of the functional principal components and offers an accurate prediction of the
conversion to AD. We examine the effectiveness of our method via simulation studies and illustrate its
application on the Alzheimer’s Disease Neuroimaging Initiative data. Supplementary materials for this article
are available online.
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1. Introduction

Alzheimer’s Disease (AD) is one of the most prevalent neu-
rodegenerative diseases worldwide. As the disease progresses, it
eventually leads to severe cognitive impairment such as language
and memory loss. It has no effective disease-modifying treat-
ment yet. Due to the lack of cure, it is of paramount interest to be
able to detect and predict the onset of AD early. This is especially
relevant for people diagnosed with mild cognitive impairment
(MCI), which is defined as a transitional stage between the
cognitive normal (CN) state and the dementia state which is of a
much more severe degree. Massive amounts of data are being
collected with the goal of identifying significant biomarkers
or covariates that may be related to the progression of AD.
In the Alzheimer’s Disease Neuroimaging Initiative (ADNI),
the focus was on the collection of longitudinal assessments of
magnetic resonance imaging (MRI), where in each follow-up
visit, the patient’s MRI scan was collected and the patient would
be diagnosed as one of the three categories: cognitive normal
(CN), MCI or AD. A series of longitudinal MRI scans as well
as demographic and prognostic covariates were collected and
might serve as significant predictors for predicting the neurode-
generative pathology due to AD.

Various existing methods have been proposed to use the
longitudinal biomarkers for the dynamic prediction of the
time-to-event outcome of AD. Welsh, Lin, and Carroll (2002)
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adopted nonparametric smoothing methods to obtain denoised
smoothed values of the biomarkers, which are then used for
prediction. More recently, functional data analysis and in
particular the functional principal component analysis (FPCA)
has been often used for analyzing the trajectories and surface
data. FPCA seeks to decompose the underlying process into a
linear combination of functional principal components (FPCs).
The earlier works on FPCA focus on one-dimensional densely
and regularly observed curves, see, for example, Ramsay and
Dalzell (1991), and Silverman (1996).

More recently, with the availability of multidimensional
or multivariate functional data, various methods have been
developed to extract the FPCs. The majority of these approaches
focus on estimating and extending the covariance function of the
multivariate random process. Lin, Li, and Luo (2021) developed
the multivariate FPCA by extending the classical Karhunen-
Loeve expansion to multivariate setting via normalization on
the covariance operator. Chen and Jiang (2017) extended the
FPCA to analyze functional data on a general multi-dimensional
domain, and used local linear smoothing to achieve large-
scale efficient estimation of the multi-dimensional covariance
function. Lin, Wang, and Cao (2016) introduced a penalty-based
method to derive FPCs that exhibit nonzero values exclusively
within intervals where their significance is observed. Sang,
Wang, and Cao (2017) developed a parametric FPCA method
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to estimate the top FPCs using simple parametric functions
in order to enhance their interpretability for users. Happ and
Greven (2018) established the theoretical framework of the
multivariate Karhunen-Loeve theorem and allowed the dimen-
sions of functional data to be definable over different domains.
Nie et al. (2018) introduced a supervised FPCA approach that
accounts for the correlation between the functional predictor
and the response variable. Lin, Li, and Luo (2021) developed
a unique extension of Karhunen-Loeve expansion for multi-
dimensional functional electroencephalography data to capture
the longitudinal trend of multi-level process. Nie and Cao
(2020) proposed a sparse FPCA method in a new regression
framework. Lin, Li, and Luo (2021) further developed a
novel covariance-based multivariate sparse FPCA that can
capture cross-correlations between functions. Shi et al. (2021)
proposed the informatively missing FPCA method for cases
where the longitudinal trajectories are subject to informative
missingness. Nie, Wang, and Cao (2022) introduced a sparse
orthonormal approximation (SOAP) method for estimating
FPCs, which avoids estimating the covariance function. Shi
et al. (2022) developed a two-dimensional FPCA method for
extracting FPCs and achieving dimensionality reduction for
images.

For dynamic prediction of AD, various methods have been
proposed in recent years. For example, Kong et al. (2018) pro-
posed a functional Cox proportional hazards model that uses
functional principal component analysis (FPCA) to extract FPC
scores from brain imaging data at the baseline as features in
the model. Li and Luo (2019a) proposed a dynamic predic-
tion framework using multiple longitudinal biomarkers under
a proportional hazards model with the multivariate FPC scores
developed by Happ and Greven (2018), and Li and Luo (2019b,
2019c) explored using the multivariate FPC scores under a joint
model framework. Jiang, Xie, and Colditz (2020) and Lin, Li, and
Luo (2021) proposed to integrate random survival forest with
multivariate FPCA to predict the progression of AD. Zou et al.
(2021, 2023) developed a Bayesian extension of the functional
mixed model.

All of the aforementioned methods focus on the modeling
time-to-event outcome based on either multivariate longitudinal
biomarker values or brain imaging data at the baseline. However,
in the practical setting, at each visit, the subject’s brain MRI
scan image is collected, represented by a multi-dimensional data
matrix. It is of great interest to predict the progression of AD
directly from such a series of longitudinally observed images.
For illustration purpose, Figure 1 illustrates the longitudinal
brain scans of two subjects, which are collected at month 0, 6, 12,
18, and 24; subject 1 was diagnosed with AD at around month
24, with a missed collection at month 18, and subject 2 was still
in the MCI state at his/her latest visit in month 18. It is also
worth noting that the actual visit time is not precisely spaced on
a 6/12-month grid and may differ by the nominal time by several
months.

Our objective is to develop an effective method for incorpo-
rating predictive information from the longitudinal image series,
which, to the best of our knowledge, has never been explored
in the literature. Compared with the models using multivariate
biomarkers (Li and Luo 2019a; Jiang, Xie, and Colditz 2020), the
features extracted from longitudinal images may provide addi-

tional information for the accurate prediction of AD. Compared
with the models based on brain imaging data at the baseline
(Kong et al. 2018), our model extended the capacity for handling
more than one image observed sparsely across multiple time
points.

However, several challenges may arise in the problem of
predicting AD from the longitudinal images. First of all, the
longitudinal images are represented by multi-dimensional data
matrices. On top of the row/column dimension of an image
matrix, for each subject the data series is characterized by an
additional dimension, the time of visit, which further adds to
the complexity of the data. Conventionally, it might be feasible
(albeit with heavy computational cost) to use the multidimen-
sional FPCA for handling such functional data, so long as they
are observed from a dense sampling scheme, that is, where the
time of follow-up visits and diagnosis are exactly spaced on an
equidistant grid. This typically requires eigendecomposition of a
six-dimensional covariance function, a task that is computation-
ally heavy. However, in the ADNI studies, the sampling scheme
is sparse and irregular, as the time of visits may differ by a few
months from subject to subject. This renders such conventional
approaches futile which rely upon the assumption of a dense
sampling scheme.

To tackle these challenges, in this article, we develop a novel
approach for dynamic prediction that is capable of accommo-
dating multidimensional longitudinal images under the Cox
regression framework. The proposed strategy consists of two
main steps. First, we consider the longitudinal image process as
a stochastic function over a multi-dimensional support, and use
a new regression-based FPCA to obtain the FPCs from all the
subjects’ longitudinal images that characterize their major mode
of variation. Second, we use the FPC scores extracted from these
subjects’ longitudinal images as predictors in a Cox proportional
hazards model to capture the relationship between the time-to-
event outcome and the longitudinal images.

Our approach has several key contributions. First, to the
best of our knowledge, our method is the first attempt handling
sparse and multi-dimensional functional data. Compared with
the majority of existing methods that focus on multivariate
longitudinal biomarkers, our proposed method greatly expands
the methodological horizon of the dynamic prediction model
with functional predictors. Compared with the multivariate
FPCA (Happ and Greven 2018; Li and Luo 2019a), our method
is tackling the problem from a different perspective: rather
than having multivariate trajectories, in our problem, the
domain/support of the stochastic process is multi-dimensional,
which is rarely studied in the existing literature. Second, our
approach to FPCA circumvents the computational necessity
of estimating a high-dimensional covariance function, as
it directly estimates the optimal empirical FPCs and their
corresponding basis coefficients via tensor product B-spline
under a regression framework. In comparison, the conventional
approach for multi-dimensional functional data is contingent
upon a dense sampling scheme and eigen-decomposition on the
sample covariance function, which requires heavy computation.
Our method provides a useful alternative to the conventional
approaches. Third, our method is capable of handling sparse
and irregular multi-dimensional data, as it relies on a flexible
regression framework. While there are existing methodologies
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Figure 1. Illustration of the longitudinal images of two subjects during their follow-ups in the ADNI study, where the AD event is denoted by a cross and the censoring
event denoted by a circle. Note that the visit times of the two subjects are irregular and do not coincide.

that focus on either the topic of sparsity (Yao, Müller, and
Wang 2005) or the topic of multi-dimensionality, a method
that simultaneously accommodates both sparsity and multi-
dimensionality is rarely studied in the literature of functional
data analysis and our method aims to fill such a research gap.
The computing codes for the implementation of the method are
available at https://github.com/haoluns/dynamicMFPCA.

The rest of the article is organized as follows. In Section 2, we
lay out the notation and describe the details of our model. In par-
ticular, we present the proposed methodology of our regression-
based multidimensional FPCA for longitudinal images and con-
struct the dynamic prediction model based on the FPC scores.
In Section 3, we conduct simulation studies to assess the finite
sample performance of the survival prediction. In Section 4, we
apply the proposed method to the ADNI datasets and present
several interesting findings. Finally, Section 5 concludes the
article with a discussion.

2. Multi-Dimensional Functional Principal
Component Analysis

We first set up the functional framework for modeling multiple
images. Let u and v denote the two-dimensional positional
offsets (horizontal and vertical) of an image, and let t denote the
time when the image is observed. Let Xi(u, v, t) denote underly-
ing three-dimensional function for the ith subject, which equals
the grayscale value of a pixel at (u, v) in an image sampled at
time t.

Let t∗ denote the maximum time period within which the
longitudinal images are used for modeling. Over the follow-
up of subject i, we assume there are ni,t time points at which
an image is observed. Each image is of size ni,u-by-ni,v, that is,
ni,u pixels along the horizontal axis and ni,v pixels along the
vertical axis. For a pixel on an image, we index it as (ju, jv), which
correspond to the ju/jvth pixel along the horizontal/vertical
axis. Furthermore, we index the time points by jt , where jt =

1, . . . , ni,t . For subject i, there are a total of ni,t longitudinally
observed ni,u-by-ni,v images, with the total number of pixels in
all the observed images being ni = ni,tni,uni,v. In the application
of our method on the ADNI study, longitudinal image are still
available after the subject’s event outcome.

Let yi,ju,jv,jt denote the observed grayscale value of a pixel on
Xi(·). We assume that yi,ju,jv,jt is sampled as,

yi,ju,jv,jt = Xi(ui,ju,jt , vi,jv ,jt , ti,jt ) + εi,ju,jv,jt ,

where ui,ju,jt and vi,jv,jt are the positional offsets of the ju and
jvth horizontal/vertical pixel of an image observed at the jtth
time point ti,jt , with ju = 1, . . . , ni,u, jv = 1, . . . , ni,v, and jt =
1, . . . , ni,t . Without loss of generality, we assume that the height
and width of an image are equal to I, that is, ui,ju,jt , vi,jv,jt ∈ [0, I],
and ti,jt ∈ [0, t∗]. The error term εi,ju,jv ,jt is assumed to have mean
zero and variance σ 2.

To simplify notation, we reduce the three-dimensional
indices ju, jv, and jt into a single index, defined simply as
j = 1, . . . , ni for every pixel of all the observed images of subject
i. The equation above can then be simplified as,

yij = Xi(uij, vij, tij) + εij,

where i = 1, . . . , n and j = 1, . . . , ni, with ni = ni,tni,uni,v being
the total number of pixels of all the longitudinally observed
images.

The three-dimensional random function Xi(u, v, t) can be
expressed in terms of the Mercer expansion of a series of
orthonormal basis functions, that is,

Xi(u, v, t) = μ(u, v, t) +
∞∑

m=1
ξimψm(u, v, t),

where ξim = ∫ t∗
0

∫ I
0

∫ I
0 {Xi(u, v, t) − μ(u, v, t)}ψm(u, v, t)dudvdt

is the mth functional principal component (FPC) score for sub-
ject i, and the function ψm(·)’s are the functional principal com-
ponents that have a norm of 1 and are orthogonal to each other.

https://github.com/haoluns/dynamicMFPCA
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Each longitudinal image process Xi(u, v, t) can be characterized
by the sequence of FPC scores ξim, where m = 1, . . . , ∞. In
practice, we retain the first M scores where M can be determined
by the total variance explained in a similar way as a multi-
variate principal component analysis. Dimensionality reduction
is achieved as the infinite-dimensional function Xi(u, v, t) is
summarized by the information of the first M FPC scores.

To extract the FPC scores, we propose a multi-dimensional
functional principal component analysis, which estimates the
first M functional principal components ψm(u, v, t) as well as
the scores ξim as the minimizer of the objective function,

1
n

n∑
i=1

1
ni

ni∑
j=1

⎧⎨⎩yij − μ(uij, vij, tij) −
M∑

m=1
ξimψm(uij, vij, tij)

⎫⎬⎭
2

.

These M FPCs and FPC scores are obtained sequentially, that is,
the mth FPC is computed based on estimates of the first m − 1
FPCs.

In Section 2.1, we will focus on estimating the first functional
principal component. In Section 2.2, we will then introduce how
to estimate the subsequent functional principal components

2.1. Estimating the First Functional Principal Component

The first FPC ψ1(u, v, t) is obtained by minimizing

1
n

n∑
i=1

1
ni

ni∑
j=1

{
yij − μ̂(uij, vij, tij) − ξi1ψ1(uij, vij, tij)

}2
, (1)

subject to
∥∥ψ1

∥∥2 = 1, where μ̂(uij, vij, tij) is the estimated mean
function by pooling all the data together and performing a spline
regression (details can be found in the supplementary material).

We use the tensor product B-spline as a means of basis
expansion to model the three-dimensional function ψ1(u, v, t),

ψ1(u, v, t) =
su∑

i=1

sv∑
j=1

st∑
l=1

β1,ijlb(1)
i (s)b(2)

j (v)b(3)

l (t).

Let bu = (b(1)
1 , . . . , b(1)

su )�, bv = (b(2)
1 , . . . , b(2)

sv )� and bt =
(b(2)

1 , . . . , b(2)
st )� denote the spline basis functions for the dimen-

sion u, v, and t, respectively, where su, sv and st are the numbers
of bases in each dimension. We can further reorganize and
simplify the summation above as

ψ1(u, v, t) = β�
1 b(u, v, t),

where

b(u, v, t) = vec(bu(u) ⊗ bv(v) ⊗ bt(t)),

and β1 is the vector of corresponding tensor product spline
coefficients β1,ijl. Here, ⊗ denotes Kronecker product and the
vec(·) is the vectorization operator, which performs stacking of
all the columns of a matrix.

Regarding the choice of su, sv, and st , the optimal number
of splines in each dimension would ideally be chosen over
cross-validation and grid-search. To be specific, we may loop
through all the candidate combinations of su, sv, and st over a
grid, compute the FPCs on the training portions in the cross-
validation folds, calculate the average of the objective functions

in (1) on the holdout testing samples based on the fitted FPC
and scores, and finally choose the parameter combination that
has the smallest objective function. For empirical convenience,
another approach with less computational burden would be to
apply the univariate cross-validation procedure for choosing the
number of splines. For example, to choose the optimal value
of st , the number of splines in the time dimension, we may
rearrange the data into univariate curves that corresponds to the
longitudinal trend in the values of each pixel over time, and apply
univariate cross-validation procedure on these curves.

To estimate ξ 1 = (ξ11, . . . , ξn1)
� and the coefficient vec-

tor β1, we propose an iterative optimization procedure, which
works as follows: given the estimate of ξ 1, update the estimate
of β1; given the new estimate of β1, update the estimate of ξ 1;
iterate between these two steps until convergence. To be more
specific, given the current estimate β

(�)
1 , we obtain the estimate

of the FPC score ξ
(�+1)
i1 by minimizing (1) via least-square as

ξ
(�+1)
i1 = (ψ�

i1ψ i1)
−1ψ�

i1yi, i = 1, . . . , n,

where ψ i1 = (ψ
(�)
1 (ui1, vi1, ti1), . . . , ψ(�)

1 (uini , vini , tini))
�, yi =

(y∗
i1, . . . , y∗

ini
)�, and ψ

(�)
1 (u, v, t) = β

(�)
1

�
b(u, v, t) is the esti-

mated functional principal component.
Next, given the estimate ξ

(�+1)
1 = (ξ

(�+1)
11 , . . . , ξ (�+1)

n1 )�, we
obtain the estimate of β1 by minimizing (1) via least-square,
subject to

∥∥ψ1
∥∥2 = 1,

β
(�+1)
1 = β̃

(�+1)

1∥∥∥ψ̃
(�+1)
1

∥∥∥ ,

where β̃
(�+1)

1 is the unconstrained estimate of β1.
We repeat the steps above until convergence. In terms of the

convergence criterion, the algorithm is deemed to have reached
convergence if the elementwise maximum of |β(�+1)

1 − β
(�)
1 | is

smaller than a prespecified threshold δ. Typically, δ takes a very
small value such as 0.00001.

2.2. Estimating Subsequent Functional Principal
Components

We obtain subsequent functional principal components in a
sequential manner. The Jth functional principal component is
computed based on the estimated FPC spline coefficient β̂m
from the first J − 1 steps. Given β̂m, where m = 1, . . . , J −
1, the Jth functional principal component ψJ is estimated by
minimizing

1
n

n∑
i=1

1
ni

ni∑
j=1

{
yij − μ̂(uij, vij, tij)

−
J−1∑
m=1

ξimψ̂m(uij, vij, tij) − ξiJψJ(uij, vij, tij)

}2
, (2)

subject to
∥∥ψJ

∥∥2 = 1 and 〈ψ̂m, ψJ〉 = 1 if m = J, and 0
otherwise.

Let ξ i = (ξi1, . . . , ξiJ)� denote the FPC scores for all the FPCs
in the ith subject and βJ denote the vector of spline coefficients
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for the Jth FPC. We propose an optimization procedure that
iteratively alternates between estimating the FPC scores and the
FPC spline coefficients, which are detailed as follows.

Given the current estimate β
(�)
J , update the estimate of ξ i by

minimizing (2) via least-square as

ξ
(�+1)
i = (ψ�

i ψ i)
−1ψ�

i yi, i = 1, . . . , n, (3)

where ψ i = (ψ i1, . . . , ψ iJ), ψ im = (ψ
(�)
m (ui1, vi1, ti1), . . .,

ψ
(�)
m (uini , vini , tini))

�, yi = (y∗
i1, . . . , y∗

ini
)�, and

ψ(�)
m (u, v, t) = β̂

�
mb(u, v, t), m = 1, . . . , J − 1,

ψ
(�)
J (u, v, t) = β

(�)
J

�
b(u, v, t).

Next, given the current estimates ξ
(�+1)
i , update the estimate

of βJ as the minimizer of (2), subject to
∥∥ψJ

∥∥2 = 1, and
〈ψ̂m, ψJ〉 = 1 if m = J, and 0 otherwise. This can be casted into
a least-square problem with constraints (Lawson and Hanson
1974). Let wij = y∗

ij −
∑J−1

m=1 ξ
(�+1)
im β̂

�
mb(uij, vij, tij). The estimate

of βJ is updated as

β
(�+1)
J = arg min

βJ

n∑
i=1

1
ni

ni∑
j=1

{
wij − ξ

(�+1)
iJ β�

J b(uij, vij, tij)

}2
,

subject to ∫ t∗

0

∫ I

0

∫ I

0

{
β̂

�
mb(u, v, t)

}{
β�

J b(u, v, t)
}

du dv dt = 0, m = 1, . . . , J − 1,

and ∫ t∗

0

∫ I

0

∫ I

0

{
β�

J b(u, v, t)
}2

du dv dt = 1.

After obtaining the FPC spline coefficient estimate β̂m for
m = 1, . . . , J, we can construct the estimate for ψ̂m(u, v, t).
As both the FPC ψ̂m(u, v, t) and the FPC scores ξim are the
minimizer of the objective function,

1
n

n∑
i=1

1
ni

ni∑
j=1

⎧⎨⎩yij − μ(uij, vij, tij) −
J∑

m=1
ξimψm(uij, vij, tij)

⎫⎬⎭
2

,

we can estimate the FPC scores ξ i via least-square as

ξ̂ i = (ψ̂
�
i ψ̂ i)

−1ψ̂
�
i yi, i = 1, . . . , n,

where ψ̂ i = (ψ̂ i1, . . . , ψ̂ iJ), ψ̂ im = (ψ̂m(ui1, vi1, ti1), . . .,
ψ̂m(uini , vini , tini))

�, yi = (y∗
i1, . . . , y∗

ini
)�, and ψ̂m(u, v, t) =

β̂
�
mb(u, v, t), m = 1, . . . , J, are the estimated FPCs.

We repeat the steps above until convergence. In terms of the
convergence criterion, the algorithm is deemed to have reached
convergence if the elementwise maximum of |β(�+1)

J − β
(�)
J | is

smaller than a prespecified threshold δ.

3. Dynamic Survival Prediction via FPC Score

We build the Cox proportional hazards model using the training
dataset. For the ith subject, a Cox proportional hazard model
can be formulated based on the FPC scores ξ̂ i and the time-
independent covariates Zi, which specifies the hazard function
as

hi(t) = h0(t) exp{̂ξ�
i α + Z�

i γ },

where h0(t) is the baseline hazard function, α and γ are the
vector of regression coefficients for the FPC scores and the time-
independent covariates, respectively.

For a new subject (n + 1) who is event free and has a series of
longitudinal images up to time t∗, let the series of the pixel values
of subject (n + 1) be denoted as {(yj, uj, vj, tj); j = 1, . . . , n∗)},
where n∗ is the total number of pixels of all the images of subject
(n+1). The FPC scores {ξ(n+1)m; m = 1, . . . , J} can be estimated
as the minimizer of the following objective function,

n∗∑
j=1

{
yj − μ̂(uj, vj, tj) −

J∑
m=1

ξ(n+1)mψ̂m(uj, vj, tj)

}2
, (4)

where the μ̂(·) and ψ̂m(·) are obtained from all the n subjects in
the cohort, and thus the objective function above is the same
as the squared loss in least-squared estimation, which can be
minimized easily via least-squared regression fit. Hence, the FPC
scores {ξ(n+1)m; m = 1, . . . , J} can be estimated by regressing all
of the observed mean-centered pixels of the (n+1)th subject on
the FPCs ψ̂m(u, v, t).

It is worth noting that the FPC scores {ξ(n+1)m; m = 1, . . . , J}
can be updated as the time horizon t∗ increases up to the
maximum follow-up time of the longitudinal images in the
cohort, and is thus dependent upon t∗. We denote the FPC score
vector (ξ(n+1)1, . . . , ξ(n+1)J)

� under time horizon t∗ as ξ̂n+1(t∗).
Under the dynamic survival prediction framework, we predict
the survival probability at t∗ + 	t as

Ŝn+1
(
t∗ + 	t | t∗

) =
Ŝn+1

(
t∗ + 	t | Zn+1, ξ̂n+1(t∗)

)
Ŝn+1

(
t∗ | Zn+1, ξ̂n+1(t∗)

)
=

{
Ŝ0

(
t∗ + 	t

)
Ŝ0(t∗)

}exp
{̂
ξn+1(t∗)�α̂+Z�

n+1γ̂
}

.

4. Data Application

4.1. ADNI Brain MRI Scans

To illustrate the usefulness of the dynamic prediction model
with multi-dimensional FPCA, we apply the method on the
publicly available Alzheimer’s Disease Neuroimaging Initiative
(ADNI) dataset. In the ADNI study, a subject’s MRI scans are
collected longitudinally every 6 months in the first 24 months
and subsequently every 12 months until the end of their follow-
up period, which usually spans over 10 years, with occasional
missed follow-ups. At each follow-up visit, a subject is diagnosed
as one of three types: cognitive normal, mild cognitive impair-
ment (MCI), and Alzheimer’s disease (AD). We treat the time
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Table 1. The regression results from Cox proportional hazards model using FPC
scores, age, gender and APOE4 as covariates and time to conversion to AD as the
time-to-event outcome in the ADNI brain scan dataset.

Variable Estimate SE p-value

FPC1 −0.3586 0.0636 <0.0001
FPC2 −0.2563 0.0642 <0.0001
FPC3 0.0761 0.0638 0.2327
FPC4 −0.0568 0.0678 0.4023
FPC5 0.0893 0.0619 0.1489
Age −0.0186 0.0108 0.0863
Gender 0.2115 0.1414 0.1348
APOE4 1.0337 0.1294 <0.0001

Table 1 shows the results of the regression coefficients, standard errors and p-values
under the Cox regression model, where the p-values below 0.001 are highlighted
in bold.

until the subject is diagnosed as AD for the first time as the time-
to-event outcome. We focus on the 674 subjects who are free of
AD at baseline, out of which 286 have eventually progressed into
AD. The average follow-up period is 47.9 (sd = 28.8) months
and the average number of follow-up visits is 5.6 (sd = 2.2).

To prepare the longitudinal images, we adopt the follow-
ing image processing procedures for the T1-weighted struc-
tural brain MRI data collected at each follow-up visit. First, we
transform the volumetric images of all the baseline scans into
the same stereotaxis space by affinely registering them to the
same template using the image processing pipelines based on
FreeSurfer version 5.3.0 (Ma et al. 2018; Popuri et al. 2020).
Specifically, we apply automatic rigid registration to the orig-
inal 3D MRI images which align all the images to the same
stereotaxis reference space, as well as conform the original data
to the same isotropic resolution. Such process ensures that the
extracted 2D slice from each subjects represent same anatom-
ical locations and are measured in the same scale. We use the
middle axial slice in the reference space for all the registered
images for the sake of its representative anatomical location
which contains most of the AD-related functional brain regions
from both hemispheres, for example, ventricle, hippocampus,
para-hippocampal region, amygdala, and neocortex (including
fronto- and temporal- lobe). We have experimented with a
number of other candidate axial slices and noted similar per-
formances. Finally, images are represented as grayscale matrices
and are de-centered by subtracting the mean value at each pixel.

4.2. Multi-Dimensional FPCA

We first apply the proposed multi-dimensional FPCA on all the
longitudinal images, and use the first 5 FPC scores as predictors
in the Cox regression model. Table 1 shows the results of the
regression coefficients, standard errors and p-values under the
Cox regression model. To compare the effect size of the coeffi-
cient in the table, we standardize the FPC scores to be centered
around 0 with a standard deviation of 1. We see that the first two
FPC scores have significant association with the risk of conver-
sion to AD, with p-values being less than 0.0001. The other FPC
scores appear to be nonsignificant and we exclude them from
our further analysis. We additionally include age, gender and the
indicator of the presence of allele of the apolipoprotein E4 gene
(APOE4) as covariates. The APOE4 gene is known to associated
with increased risk of developing late-onset Alzheimer’s disease.

We note that the variable APOE4 is also significant with a p-
value less than 0.0001, while the variables gender and age are not.

Figure 2 shows the plots of the first 2 FPCs with a snapshot
taken at time points 0, 6, 12, 18, and 24. As the FPCs are longitu-
dinal images, we present the plot of FPCs at baseline, as well as
the change from the baseline FPCs (denoted as 	FPC1(t) and
	FPC2(t)). The first FPC has no regional variation in the brain
and is of a uniform color, which represents an overall difference
in the grayscale density of the images. Moreover, there is almost
no change in the first FPC since the baseline as the subsequent
plots of 	FPC1(t) are almost transparent. The second FPC
exhibits a regional contrast in the middle part (blue) and the two
peripheral regions (red), which corresponds to roughly where
the hippocampus is located. There are some evident changes in
subsequent months; for example, a positive change at months 6
and 24, and a negative change at months 12 and 18.

4.3. Model Comparison

Moreover, for comparison, we consider a functional Cox pro-
portional hazards model with a univariate biomarker as the
functional predictor (Kong et al. 2018). The model uses the
average grayscale density in the hippocampus region as the
longitudinal biomarker, and conducts FPCA on the univariate
biomarker trajectories before using the obtained FPC scores as
covariates in the Cox proportional hazards model. In addition to
the FPC scores, the model incorporates the baseline information
of subjects, such as age, gender and APOE4.

We compare the predictive performance of our model with
that of the univariate functional Cox proportional hazards
model, in terms of the AUC and the expected Brier score (BS),
at various time points in the whole study period of ADNI. For
the sake of robustness in the comparison, we conduct a 5-fold
cross-validation, where we estimate the first three FPCs and the
Cox model from training set, and apply the model in the testing
set by first computing the FPC scores for the new subjects and
estimating their survival probabilities using the Cox model from
the training stage. For landmark time points t∗ =6, 12, 18, and
24, we predict the conditional survival probability at t∗ +	t, for
time window 	t = 24. The AUC, denoted as AUC(t∗, t∗ + 24),
and expected Brier scores, denoted as BS(t∗, t∗ + 24), are
computed based on the predicted probabilities of the subjects in
the testing set.

Figure 3 shows the AUC and Brier score evaluated dynami-
cally for each time window (t∗, t∗ + 24) given the data observed
up to t∗ = 6, 12, 18, and 24. It is evident that the proposed model
that uses the information in the longitudinal multi-dimensional
images achieves better predictive performance than the univari-
ate functional Cox model over all time points. This indicates that
the information extracted from the multi-dimensional FPCA
leads to improved model discrimination and calibration.

4.4. Illustration of Dynamic Prediction

Finally, we demonstrate the model’s capability of dynamic
prediction for a new subject. As an illustration, we present the
dynamic updating of a subject’s FPC scores and prediction of
the event-free probability. After being enrolled in the study,
the subject’s follow-up visits occur at around months 6, 12,
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Figure 2. The plots of the first 2 FPCs with a snapshot taken at time points 0, 6, 12, 18, and 24 in the analysis of ADNI brain MRI scans. As the FPCs are longitudinal images, we
present the plot of FPCs at baseline, as well as the change from the baseline FPCs, which are denoted as 	FPC1(t) and 	FPC2(t). The magnitudes of positive and negative
values are shaded by a gradual color scheme in red and blue, respectively.

18, and 24, and his/her longitudinal brain scans are collected.
At each landmark time point, we re-estimate the FPC scores.
Specifically, at time t∗, we updated the subject’s first and second
FPC scores by regressing all the observed mean-centered
pixels of the series of images observed up to time t∗, on the
FPCs ψ̂1(u, v, t) and ψ̂2(u, v, t) obtained from the trained
model. With new information being gleaned, the subject’s FPC
scores as well as the predicted hazard ratio to the baseline
are updated.

Figures 4 and 5 show the dynamic updating of the FPC scores
and the resultant contributive factor from the FPC, that is, the
product between the FPC and the subject’s FPC scores. We
observe that the first FPC score remains relatively stable in the
range between −600 and −400. On the other hand, the second
FPC score decreases from 565.2 at month 6 to −389.5 at month
24. The change in the second FPC score is evidently demon-
strated by the contrast in color between the first and the last row
in Figure 5. As the second FPC score is negatively associated with
the hazard in the Cox model, the resultant predicted hazard ratio
to the baseline increases over time as a result of the changes in the
FPC scores, as shown in Figure S.1 in the supplementary mate-
rial. Moreover, the Cox model allows us to plot the predicted
event-free probabilities given the survival up to time t∗, which
are shown in Figure S.2 in the supplementary material. Compare
to t∗ = 6, the predicted event-free probability function is slightly
more tilted to the downside, indicating a deterioration in the
disease status.

5. Simulation Studies

5.1. Simulation: FPCA

We conduct simulation studies to evaluate the empirical perfor-
mance of the proposed FPCA method in terms of recovering
the underlying modes of variation from longitudinal series of

images. The goal is to establish the accuracy of extracting and
recovering the FPCs based on the proposed alternating regres-
sion approach.

We first create the true underlying multi-dimensional
stochastic process, assuming that the FPCs are known. The mean
function estimation in our method is expected to perform well
as the estimator is consistent, and thus our focus lies on the
estimation of FPCs. We generate the underlying true multi-
dimensional surfaces Xi(u, v, t) as the sum product of two
sets of FPCs and scores, with a mean function that satisfies
μ(u, v, t) = 0,

Xi(u, v, t) = ξi1ψ1(u, v, t) + ξi2ψ2(u, v, t), i = 1, . . . , n.

We use the first two FPCs from the analysis of the ADNI data
as the underlying true FPCs ψ1(u, v, t) and ψ2(u, v, t) and they
naturally satisfy

∥∥ψj
∥∥2 = 1, and 〈ψj, ψk〉 = 1 if j = k, and

0 otherwise. We assume that the FPC scores follow a Gaussian
distribution. The FPC scores ξi1 and ξi2 are independently drawn
from normal distributions with mean 0 and decreasing standard
deviations of 4000 and 1000, respectively: ξi1 ∼ N(0, 40002),
and ξi2 ∼ N(0, 10002). Note that at any (u, v, t), the actual
magnitudes of ψ1(u, v, t) and ψ2(u, v, t) are in the range of
10−5, and thus we use large values of standard deviations. The
decreasing standard deviations is designed to reflect the fact that
the higher ranked FPC very often explains a larger proportion
of variation.

Having created the true underlying surfaces, the observed
data points are simulated from the multi-dimensional surfaces
in addition to a random term of error. We consider both
dense and sparse sampling schemes. Under the dense sampling
scheme, all the subjects share the same set of time points when
the images are observed; and under sparse sampling, the time
points of the images are oftentimes not the same across subject.
The observed images are drawn over a 30 × 30 grid, and at a
series of timepoints yij = Xi(uij, vij, tij) + εij, where the random
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Figure 3. Comparison of AUC and Brier score in time window (t∗ , t∗ +24) of the proposed FPCA model based on varying images, versus the model based on hippocampus
pixel density given data observed up to t∗ = 6, 12, 18, 24 under a sliding window framework in the ADNI study.

errors εij are independently drawn from a normal distribution
with a mean of zero and a standard deviation of 0.01. Under
dense sampling, the time points are fixed at {0, 5, 10, . . . , 30}.
Under sparse sampling, for each subject, we randomly draw nt
values from {0, 2.5, 5, . . . , 30} as the time points; we experiment
with nt = 3 and 6.

We apply the proposed multi-dimensional FPCA on the sim-
ulated data and measure the difference between the extracted
FPCs and the true ones. To evaluate how well the proposed
method approximates the true FPCs, we use the integrated mean
squared error (IMSE), which is defined as

IMSE(ψ̂k) =
∫ ∫ ∫ {

ψ̂k(u, v, t) − ψk(u, v, t)
}2

du dv dt,

k = 1, 2.

The IMSE is interpreted as the integrated squared differ-
ences between the estimated functional principal component

functions ψ̂k and the true ones ψk. Note that as both ψ̂k and ψk
have a norm of 1, that is, the integration of ψ̂2

k and ψ2
k is equal to

1, the IMSE would fall in the range of [0, 4]. A poorly estimated
FPC typically has an IMSE greater than 1, and the IMSE of
a precisely estimated FPC is very close to 0. Furthermore, to
evaluate how accurate the method estimates the FPC scores, we
compute the mean squared standardized error (MSE) between
the estimated FPC scores ξ̂ik and the true ones ξik averaged
across all the subjects i = 1, . . . , n. We compute the IMSEs and
MSEs based on 100 data replications. For one data replication
with 200 subjects and 6 timepoints per subject, it typically takes
less than 5 iterations (in 5 min) to extract the first FPC and 10-15
iterations (in 15 minutes) for the second FPC.

Figures S.3 to S.4 in the supplementary material shows the
boxplots of the IMSE of the estimated FPCs ψ̂1(·) and ψ̂2(·), and
the MSE of the estimated FPC scores ξ̂1 and ξ̂2 under the dense
and sparse sampling scheme with 6 timepoints, with the number
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Figure 4. Illustration of the dynamic updating of the FPC scores for the first FPC. Each row plots the product of FPC functions and the corresponding FPC scores for a single
subject in the ADNI study, evaluated at month 6, 12, 18, and 24. The top to the bottom rows correspond respectively to the updating of the FPC scores based on the observed
longitudinal images up to month 6, 12 ,18, and 24. The magnitudes of positive and negative values are shaded by a gradual color scheme in red and blue, respectively.

of subjects varying from n = 50, 200 to 500. It is evident that
the IMSE and MSE both converge towards zero as the sample
size increases. Furthermore, Figure S.5 in the supplementary
material shows the boxplots of the IMSE and MSE when there
are as few as only 3 sparsely sampled timepoints for each subject,
with varying number of subjects n = 100, 400, and 1000,
indicating that our method still works well under a very sparse
sampling scheme given a large enough sample size. Figure S.6
shows the boxplots of the IMSE and MSE as the number of
sparsely sampled timepoints increases from 3 to 5 under a fixed
number of subjects n = 200, which depicts a decreasing trend.
These results establish the empirical validity and consistency of
the proposed FPCA method.

5.2. Simulation: Dynamic Survival Prediction

Next, we conduct simulations studies to evaluate the finite-
sample performance of the dynamic prediction model. The sim-
ulation study is designed to assess the predictive performance

of the proposed dynamic prediction framework given the longi-
tudinal images drawn from a prespecified nonlinear stochastic
process. The total number of data replications is 100 and in
each replication, the sample size is 300 and each subject has
longitudinal observations at multiple time points.

To generate the longitudinal images, we consider a complex
nonlinear longitudinal submodels as follows. For the jth pixel of
the ith subject, rather than assuming the FPCs are known, the
pixel value Yij is simulated from a more complex model

Yij = Xi(uij, vij, tij) + εij,
Xi(uij, vij, tij) = β0 + β1wi + sin(6πuij) + 9(vij − 0.5)2

+ log(tij + 1) + bi,

where εij is a random measurement error term drawn from a
normal distribution with a mean of 0, bi is the subject-specific
random effect generated from a standard normal distribution
N(0, 1), wi is a scalar predictor generated from N(3, 1). We
set β0 = 1.5, β1 = 2. We assume that the uij and vij are
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Figure 5. Illustration of the dynamic updating of the FPC scores for the second FPC. Each row plots the product of FPC functions and the corresponding FPC scores for a
single subject in the ADNI study, evaluated at month 6, 12, 18, and 24. The top to the bottom rows correspond respectively to the updating of the FPC scores based on
the observed longitudinal images up to month 6, 12 ,18, and 24. The magnitudes of positive and negative values are shaded by a gradual color scheme in red and blue,
respectively.

sampled from a two-dimensional equidistant grid between 0
and 1 with a distance of 0.1, and the observation time tij ∈
{0, 3, 6, 9, 12, 15, 18, 21}.

To generate the survival time, we first assume a constant
baseline hazard function h0(t) = exp(−7) and the survival
submodel is

hi(t) = h0(t) exp
{

ziγ + α

∫ t

0

∫ 1

0

∫ 1

0
Xi(u, v, s)dudvds

}
where zi is sampled from the Bernoulli distribution with a
probability of 0.5. We set γ = −2.5 and α = 0.1. To simulate
the survival time tij, we use inverse sampling to first draw u ∼
Unif(0, 1), and then set the survival time to be H−1(u), the
inverse of the cumulative hazard function. Moreover, we assume
that the censoring time is independent from survival time, and
generate the censoring time from a uniform distribution to
achieve a censoring rate of about 30%.

After laying out the simulation settings for the longitudinal
submodel and the survival submodel, we now describe how

the dynamic predictions are constructed and evaluated. In each
data replication, out of the 300 simulated samples, we randomly
select 200 as the training data and use the remaining 100 for
testing the accuracy of survival prediction. We first fit the tensor
product B-spline on all the longitudinal images in the training
set. The number of basis functions for the two image dimensions
and the time dimensions are 12, 12, and 4, respectively. We
have experimented with other choices of the number of basis
functions (e.g., 9/9/6) and the results are very similar. We then
apply the proposed FPCA method to extract the first two FPCs.
Then, we fit the Cox proportional hazards model on the FPC
scores and baseline covariates. After fitting the model, indi-
vidualized dynamic predictions are made for each of the 100
subjects in the testing set. To be specific, for subject i, we use
the longitudinal images up to time point t∗ to compute the FPC
score and use the model fitted from the training data to predict
the survival probability Ŝn+1(t∗ + 	t | t∗) at some future time
point t∗+	t. To assess prediction performance of the model, we
adopt several measures. The AUCs are computed based on the
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predicted survival probabilities of all subjects in the testing set.
We also compute the true AUC based on the true conditional
survival probabilities Sn+1(t∗ + 	t | t∗), which are calculated
with known parameter values in the survival model. Moreover,
we use the Brier score as a measure of discrimination to assess
the discrepancies between the predicted and true risks. For com-
parison, we also construct the true Brier score which uses the
true event probability in place of the estimated probability in the
calculation. These dynamic prediction measures are calculated
for each time window (t∗, t∗ + 	t) given the data observed up
to t∗ = 9, 12, 15, for 	t = 3, 6.

Table S.1 in the supplementary material presents the pre-
diction measures recorded dynamically for different landmark
time points and time windows by averaging the results from
100 testing data replications. It is evident that the AUCs of the
proposed model are in good alignment with the true AUC,
which indicates that the proposed model has good prediction
performance in terms of discrimination. The Brier score is a
measure of the accuracy of survival predictions in terms of how
well the model’s predicted probabilities of the event match the
actual outcomes, and a value close to 0 would be ideal. We
observe that the Brier scores is relatively small and close to
the true Brier score, indicating good agreement between the
predicted risk and the true risk. Due to randomness in the
simulation, in some cases, the Brier scores are lower than the
true ones. We also experimented with a varying σε , the variances
of the random measurement error term εij, to examine whether
model can still maintain the good predictive accuracy under a
larger degree of noise in the longitudinal images. It can be seen
that the model has a robust performance even when the noise
variance increases.

6. Discussion

In this article, we have extended the dynamic prediction frame-
work for univariate trajectories to sparse multi-dimensional
functional data. Our proposed FPCA method uses alternating
regression on trivariate tensor product splines to extract major
mode of variation of a three-dimensional random process. For
general arbitrary dimensional random process, a more prin-
cipled methodological development on FPCA on large-scale
or high-dimensional data is needed. As direction of further
research, it is worthwhile to explore alternative basis function
that are more versatile than trivariate tensor product spline and
can handle functional data with larger dimensions (Consagra
2022), or use more computationally efficient dimension reduc-
tion technique in the estimation of FPCA (Chen and Jiang 2017).
For example, Consagra (2022) proposed the use of data-driven
marginal product basis for general arbitrary dimensional func-
tional data, and Chen and Jiang (2017) discussed the use of local
smoother and random-projection-based eigendecomposition of
the covariance function to accommodate functional data of large
scale and dimension.

Furthermore, it is worth noting that in the case of the ADNI
data, a subject’s MRI brain scans are still obtainable after the
occurrence of Alzheimer’s disease, and are used in our appli-
cation; and thus our method would not suffer from the com-
mon pitfalls of entanglement between the partially observed
longitudinal data and survival time: typically, the separation of

estimating the FPC and estimating the survival model may cause
bias because the longitudinal data are no longer observable after
the event occurs, and conducting FPCA on the longitudinal data
that is partially observed up until the event time may miss out
on capturing the effect of survival on the longitudinal process.
Fortunately, this is not the case for our application on the ADNI
data because the MRI scans are still regularly collected even after
the subject is diagnosed with AD.

In the ADNI data, the longitudinal functional images are
essentially noiseless and observable after the events; this renders
our method applicable despite its two-stage nature. However,
when there is substantial noise in the functional data, which may
lead to biases in the estimated FPC scores under our two-stage
approach, the joint modelling approach serves as a particularly
useful alternative. Under the joint model, one should no longer
separate the estimation of the FPC and the fitting of the survival
model, otherwise it may incur biases in the FPC scores. Instead,
a one-step joint model approach that can simultaneously model
the likelihood of the multidimensional random process, as well
as the survival outcome, would render a more statistically prin-
cipled prediction of the survival probabilities. As avenues of
future research, we may develop a one-step multi-dimensional
functional joint integrative model that builds upon the work on
the functional joint model such that the estimation of the multi-
dimensional FPC and the survival prediction can be achieved in
a single model.

Supplementary Materials

Supplementary Document: The supplementary document includes the
estimation details for the mean function and the additional results of
simulation studies.
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